Predictability of the Moisture Regime Associated with the Preonset of Sahelian Rainfall

R.J. Mera and F.H.M. Semazzi

North Carolina State University, Climate Modeling Laboratory climlab.meas.ncsu.edu

Introduction: The moisture regime associated with the preonset of the West African monsoon is of primary concern for the population in the region due to its influence in areas such as health. The end of meningitis outbreaks, for example, tends to coincide with influx of moisture at the end of the dry season. This study will serve as a complement to work currently under development at the University Corporation for Atmospheric Research (UCAR) Africa Initiative by evaluating the skill of WRF and other model forecasts of weather variables that are relevant to meningitis management in the region.

Objectives: (1) Determine optimal combination of physics parameters for the Weather Research and Forecasting (WRF) model over West Africa. (2) Examine different ensembling techniques for short range and seasonal prediction. (3) Analyze model performance in capturing diurnal and intraseasonal variability (transient convective events) of moisture dynamics at synoptic and local levels.

Ensemble prediction: We use physics parameter variation method for seasonal prediction and initial conditions method (below) for 2-15 day real-time forecasts.

Model Physics Combinations
a.) Using Noah Land Surface Model
b.) Using Thermal diffusion

Diurnal and intraseasonal variability: We use relative humidity (RH, %) as a variable due to its relationship with the disease. Downscaling of FNL reanalysis (varying-physics ensemble) shows the model can capture (a) diurnal variability as well as (b) intraseasonal. Shown below are simulations in May 2006 represented as area averages over Niamey, Niger. "E" + number denotes individual ensemble members.

Conclusions and recommendations: We find that WRF can be used to diagnose moisture regime preceding the West African Monsoon for health efforts in the region at the district level. The model is able to capture diurnal and intraseasonal variability of moisture in the atmosphere. Certain physics parameter combinations using the thermal diffusion land surface physics scheme greatly degrades model performance. Large differences occur between using NCEP Final Analyses (FNL) skin temperature and the higher resolution NCEP real-time global (RTG) SSTs as lower boundary conditions.

Funding and Collaborators: Primary funding for this study was provided by the National Oceanic and Atmospheric Administration (NOAA) Interdisciplinary Scientific Environmental Technology (ISET) program and Google.org. Collaborators include the principal investigators Rajul Pandya at the University Corporation for Atmospheric Research (UCAR), and Fred Semazzi (North Carolina State University), as well as Mary Hayden, Thomas Hopson, Artemes Laiy, Jeff Laas, Thomas Warner, Thomas Vignes at National Center for Atmospheric Research (NCAR)/UCAR, Madeleine Thomson and colleagues at the International Research Institute (IRI) for Climate and Society, and Benjamin Lampley (Ghana).